MATH4010 Functional Analysis (2020-21): Homework 4. Deadline: 28 Oct 2020

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

 \bigstar Each answer paper must include your name and student ID.

- 1. Let $X = \{f \in C^b(-1, 1) : f' \text{ exists and bounded continuous on } (-1, 1)\}$. Suppose that X is endowed with the sup-norm. Using the Open Mapping Theorem or otherwise, show that X is a not Banach space.
- 2. Let X and Y be Banach spaces. Let $T_n : X \to Y$ be a sequence of bounded linear operators. Show that the followings are equivalent.
 - (i) The sequence $(||T_n(x)||)$ is bounded for all $x \in X$.
 - (ii) The sequence $(f(T_n x))$ is bounded for all $f \in X^*$ and for all $x \in X$.
 - (iii) The sequence $(||T_n||)$ is bounded.
- 3. Let T is be linear isomorphism from a normed space X onto a normed space Y. Show that if T is a closed operator, then so is its inverse T^{-1} .

*** End ***